

Technical Specifications Strength Testing

朝鮮語る新たの出品

D.RR

3/16 FE

SOM

909 West Vista Way Vista, California, 92083 760.732.5826 phone 800.516.1349 fax www.ecob.net

Red Shieldtm Coatings Have No Adverse Effect on Wood Fiber Strength

Testing Via ASTM D198 Protocol Reveal...

New testing reveals that Red Shieldtm coatings have no adverse effect on wood fiber strength therefore no degradation of flexural properties must be taken into account. Eco Building Products employed Louisiana State University Wood Durability Lab at Louisiana Forest Products Development Center to perform testing of Red Shield coatings in accordance with American Society for Testing and Materials (ASTM) D198 Standard Test Methods of Static Tests of Lumber in Structural Sizes.

ECOB choose to use Laminated Veneer Lumber (LVL) as the substrate due to the high strength and uniformity of manufacturing. Two groups where tested, treated vs. untreated. Each sample was tested for Modulus of Elasticity (MOE - Bending Stiffness) and Modulus of Rupture (MOR - Bending Strength) using an Instron model 5582a device to deflect the samples. Test results indicated no significant difference among the two groups.

Based upon the testing results and third party evaluation Eco Building Products will stand behind any claims that the application of Red Shield Coatings by an authorized treatment facility will have no short or long term effects on the strength of wood fibers.

Attached please find complete test results including third party opinions and various wood manufacture acknowledgments.

Any questions can be directed towards Mark Vuozzo, Chief Technical Officer – Eco Building Products, Inc. <u>mvuozzo@ecob.net</u>

August 18, 2011

TO: Whom it may concern:

RE: Eco Red Shield Bending Data

I supervised the testing of LVL samples tested in three point bending in accordance with ASTM D-198. It was my understanding that the objective of the test was to determine the effect of the Eco Red Shield product on LVL bending properties. Toward this end, a comparison of any differences between the treated to untreated samples would be appropriate. The results clearly showed that the Eco Red Shield product does not have any adverse affect on the modulus of elasticity (MOE) nor modulus of rupture (MOR) of LVL. The mean values of the treated samples are not significantly different from the corresponding untreated samples. Therefore, the treatment did not have an adverse affect on the bending properties.

Sincerely,

Jude 7 Shupe

Todd F. Shupe, Ph.D. President, Society of Wood Science and Technology Fellow, International Academy of Wood Science

Flexure Testing of LVL Treated With Eco Red Shield Protection vs. Untreated LVL

Report #: WDL-2011-12

Final Report To:

Eco Building Products, Inc- DBA EcoBuilding Products, Inc.

Mark Vuozzo 909 West Vista Way Vista, CA 92083 (760) 732-5826 (office) (800) 516-1349 (fax)

Submitted By:

Q. Wu, T.F. Shupe, and J. Curole Wood Durability Lab Louisiana Forest Products Development Center School of Renewable Natural Resources LSU Agricultural Center Baton Rouge, LA 70803 Tel. (225)578-4255 Fax (225)578-4251

August 19, 2011

We kindly request that all public references to the contents of this report be attributed to "LSU AgCenter's Wood Durability Lab"

TABLE OF CONTENTS

SIGNATORIES	3
BACKGROUND	4
OBJECTIVES	4
	4
MATERIALS AND METHODS	4
RESULTS	7
TABLES	8
	10
CONCLUSIONS	13
REFERENCES CITED	14
APPENDIX I and II	15

Report Authorized By:

Jede 7 Shupe

Date: <u>8-18-11</u>

T.F. Shupe, Ph.D. Professor, Wood Science Phone: (225) 578-6432 Fax: (225) 578-4251 E-mail: tshupe@agcenter.lsu.edu

Report Prepared By:

0

Date: <u>8-15-11</u>

J.P. Curole Research Associate Phone: (225) 578-4157 Fax: (225) 578-4251 E-mail: jcurole@agcenter.lsu.edu

Report Edited By:

Date: <u>8-16-11</u>

Q. Wu, Ph.D. Professor, Wood Science Phone: (225) 578-8369 Fax: (225) 578-4251 E-mail: qwu@agcenter.lsu.edu

BACKGROUND

The Wood Durability Laboratory (WDL) at the LSU AgCenter became an ISO 17025 accredited laboratory through the International Accreditation Services (IAS) accreditation system on March 1, 2008. Additional test standards were added by IAS to the WDL approved scope of services on July 24, 2008 (Table 1). The lab essentially has been operating under ISO 17025 Guidelines for over five years. This report is an AC-85 compliant report as determined by IAS guidelines the report has not been reviewed by a licensed professional engineer.

Samples and information sheets on traceability of samples were provided by the sponsor. The results from this test only relate to the items tested.

1	able 1. Current WDL	test methods accredited by MS.
	Wood testing	ASTM Standards D 143 ² , D 1037 ² ; Test methods referenced in
		Section 4.0 of ICC-ES Acceptance Criteria AC257 ³
	Wood preservatives	ASTM Standards D 1413 ¹ , D 1758 ¹ ,D2481 ³ , D 3273, D 3345 ¹ , and D 4445 ³ ; AWPA Standards E1 ¹ , E5 ³ , E7 ¹ , E9 ³ , E10 ¹ , E11 ¹ , E12 ¹ , E16 ³ , E18 ³ , E22 ² , E23 ² and E24 ¹ ; WDMA Standards TM-1 ¹ and TM-2 ¹
1		

Table 1. Current WDL test methods accredited by IAS.

¹Approved March 1, 2008.

²Approved July 24, 2008.

³Approved November 20, 2009.

OBJECTIVES

The objective of this study was to perform the ASTM D198 standard test method of static test of lumber in structural size (flexure). The product we tested was cut from ILevels Microlam 1.9 E Douglas-fir LVL 1 3/4" x 11 7/8" which was procured by the test sponsor from Pine Tree Lumber and sent to the LSU WDL. The LVL was treated by the LSU WDL with Eco Red Shield Protection at the 15% retention level. Also included in this test was an untreated ILevel Microlam (LVL) control. The test included 20 samples of each treated and untreated LVL.

MATERIALS AND METHODS

Procedure

The tests were performed in accordance with American Society for Testing and Materials (ASTM) D198 Standard Test Methods of Static Tests of Lumber in Structural Sizes. The Flexure procedure was followed for this test method.

Treatments

The test preservatives used were provided to the WDL by Eco Building Products. One concentration level of Eco Red Shield Protection product was used at a 15% mix. The LVL samples were dipped in the mixture for 30 seconds each. After dipping the samples were set to dry using a box fan. The specimens were conditioned to a constant weight to moisture equilibrium in the desired environment (Appendix I). Mixing and application instructions for Eco Red Shield Protection solution were as follows.

Add X lbs of water to a bucket be sure to use 80 to 120 F hot water Add X lbs of DOT to the bucket and blend to homogenization Add X lbs of AF21 to the bucket and mix for minimum of 1 minute Add X lbs of Wood Surface Concentrate to the bucket and mix for minimum of 1 minute

D198 Flexure Testing Procedures:

Flexure Testing

This test is used to determine the flexural properties of laminated wood, such as beams of rectangular cross section. The beams were deflected at a rate of outer strain of 0.0010in./in. per min. and a maximum load until rupture occurred. The device used to deflect the samples was an Instron model 5582.

Wood Samples

Wood selected for this test was cut from ILevels Microlam 1.9E Douglas-fir. LVL 1 3/4" x 11 7/8". The testing samples were milled to 1 3/4" x 3" x 30" and received by the LSU WDL at these dimensions. Two shipments of LVL samples were received by the WDL. The two shipments had different densities therefore they were kept separate as two individual groups for treating purposes. Each group contained 20 specimens that were separated into 10 specimens each. Of those 20 specimens, 10 were dip treated with Eco Red Shield and 10 were untreated. The total testing consisted of 20 specimens that were treated and 20 that were untreated.

Moisture Content (MC)

After each bending test, 1" samples were cut from the middle of the testing specimens. The samples were dried down in a microwave oven with three consecutive thirty second bursts. Weights were taken during this process. The samples were then put into a convention drying oven over night and a weight was taken 24 hours later (Appendix II).

Figure 1. Typical untreated ILevels Microlam 1.9E Douglas-fir LVL. These samples were received by LSU WDL milled down to the actual testing size of 1 3/4" x 3" x 30".

RESULTS

Table 2 provides individual flexural data for the primary data of interest (i.e., MOE, MOR, and energy). Table 3 and 4 provides information on means and standard deviations of the treated and untreated groups. Table 5 provides significant differences determined between treatments for the experimental variables using the LSD test procedure. Table 6 shows no significant differences when the data is grouped based on sample density. This table was added to provide proof that combining the data sets as one treated and one untreated group will yield the same statistical results Figures 2-5 provide graphs of the data for this test.

Modulus of Elasticity (MOE - Bending Stiffness)

The mean MOE data for both untreated and treated samples was very closely related. The mean MOE value for untreated samples was 1,661,206.10 psi vs. 1,690,850.48 psi resulting in no significant difference among these two groups. The standard deviation for the treated samples 117,120.68 psi had a large spread among all samples compared to the untreated samples 101,844.85 psi which had a smaller spread.

Modulus of Rupture (MOR - Bending Strength)

The mean MOR data for both untreated and treated samples was also closely related. The mean MOR value for the untreated samples was 9961.3 psi vs. 9986.5 psi for the treated samples resulting in no significant difference among these two groups. Again the same can be said here, for the treated samples had a large spread among all samples 1356.81 psi compared to the untreated samples 1087.70 psi, which had a smaller spread. After breaking sample T2 was found to contain a 1" knot on the tension face of the specimen. The data could be culled but was not for this report.

Energy (foot pounds)

The mean energy data for both untreated and treated samples was also closely related. The mean energy value for the untreated samples was 56.7 ft lbs vs. 56.4 ft lbs for the treated samples resulting in no significant difference among these two groups. With this measurement the range for the untreated group was slightly higher than the treated group, 16.16 ft lbs for the untreated vs. 15.84 ft lbs for the treated group.

ID	Depth (in)	Width (in)	Weight (lbs)	MOE (psi)	MOR (psi)	Energy (ft. lbs)
C1	1.710	3.048	3.01	1627612.8	9108.37	47.93
C2	1.709	3.024	3.18	1759155.4	11595.76	83.26
C3	1.727	3.038	3.13	1559421.4	8346.92	42.46
C4	1.725	3.046	3.15	1572317.5	8857.45	42.96
C5	1.722	3.044	3.12	1579131.5	9396.99	37.94
C6	1.714	3.037	3.07	1646932.1	8635.54	46.44
C7	1.710	3.028	3.22	1842919.7	11656.68	85.41
C8	1.709	3.030	3.04	1525505.1	8288.90	41.62
C9	1.713	3.048	3.07	1499996.4	9378.14	53.29
C10	1.712	3.039	3.23	1672590.4	9259.21	44.97
T1	1.711	3.082	3.17	1538377.4	9518.82	56.45
T2	1.715	3.046	3.27	1575391.6	7282.34	n/a
T3	1.729	3.046	3.13	1543311.3	7173.56	n/a
T4	1.720	3.033	3.17	1507941.9	10254.17	71.43
T5	1.720	3.043	3.09	1675043.9	8768.98	37.81
T6	1.706	3.044	3.21	1794464.9	11668.28	n/a
T7	1.707	3.024	3.21	1857923.6	11266.53	74.23
T8	1.744	3.031	3.25	1589090.5	7472.34	31.31
Т9	1.721	3.040	3.33	1718224.1	11497.14	77.16
T10	1.706	3.028	3.19	1813014.4	10268.67	54.68
C11	1.723	3.068	3.37	1672054.0	8680.51	42.10
C12	1.767	3.048	3.63	1748393.7	10419.51	60.69
C13	1.767	3.060	3.47	1680669.9	10874.93	81.30
C14	1.749	3.039	3.47	1500312.2	10307.83	70.01
C15	1.747	3.055	3.53	1824220.7	10850.27	66.68
C16	1.740	3.058	3.36	1805511.2	10497.83	67.33
C17	1.758	3.095	3.37	1720166.2	10624.01	72.01
C18	1.739	3.068	3.40	1585456.6	10496.38	71.85
C19	1.741	3.046	3.49	1690244.7	10901.03	n/a
C20	1.722	3.061	3.47	1711510.5	11048.97	75.39
T11	1.722	3.064	3.48	1683023.3	10016.30	64.26
T12	1.728	3.064	3.43	1693372.2	11069.28	84.71
T13	1.724	3.062	3.57	1884323.2	10188.90	60.17
T14	1.755	3.041	3.54	1681192.9	10828.51	85.25
T15	1.751	3.046	3.65	1820444.6	10563.10	76.91
T16	1.732	3.090	3.40	1613015.5	9576.84	53.19
T17	1.738	3.060	3.67	1654143.5	10325.23	73.02
T18	1.747	3.066	3.46	1593449.4	10595.00	80.84
T19	1.717	3.048	3.53	1905572.5	11372.41	82.26
T20	1.776	3.066	3.68	1675688.9	10023.56	64.51

Table 2. Individual flexural data.

	Untreated LVL Control Samples										
ID	MOE (psi)	Means	MOR (psi)	Means	Energy (ft. lbs)	Means					
C1	1627612.8		9108.37		47.93						
C2	1759155.4		11595.76		83.26						
C3	1559421.4		8346.92		42.46						
C4	1572317.5		8857.45		42.96						
C5	1579131.5		9396.99		37.94						
C6	1646932.1		8635.54		46.44						
C7	1842919.7		11656.68		85.41						
C8	1525505.1		8288.90		41.62						
C9	1499996.4		9378.14		53.29						
C10	1672590.4	1661206.1	9259.21	9961.3	44.97	56.7					
C11	1672054.0		8680.51		42.10						
C12	1748393.7		10419.51		60.69						
C13	1680669.9		10874.93		81.30						
C14	1500312.2		10307.83		70.01						
C15	1824220.7		10850.27		66.68						
C16	1805511.2		10497.83		67.33						
C17	1720166.2		10624.01		72.01						
C18	1585456.6		10496.38		71.85						
C19	1690244.7		10901.03		n/a						
C20	1711510.5		11048.97		75.39						

Table 3. Means for untreated and treated LVL samples.

	Treated LVL Samples								
ID	MOE (psi)	Means	MOR (psi)	Means	Energy (ft. lbs)	Means			
T1	1538377.4		9518.82		56.45				
T2	1575391.6		7282.34		n/a				
Т3	1543311.3		7173.56		n/a				
T4	1507941.9		10254.17		71.43				
T5	1675043.9		8768.98		37.81				
T6	1794464.9		11668.28		n/a				
T7	1857923.6		11266.53		74.23				
T8	1589090.5		7472.34		31.31				
Т9	1718224.1		11497.14		77.16				
T10	1813014.4	1690850.5	10268.67	9986.5	54.68	56.4			
T11	1683023.3		10016.30		64.26				
T12	1693372.2		11069.28		84.71				
T13	1884323.2		10188.90		60.17				
T14	1681192.9		10828.51		85.25				
T15	1820444.6		10563.10		76.91				
T16	1613015.5		9576.84		53.19				
T17	1654143.5		10325.23		73.02				
T18	1593449.4		10595.00		80.84				
T19	1905572.5		11372.41		82.26				
T20	1675688.9		10023.56		64.51				

	Untreated LVL Control Samples									
ID	MOE (psi)	Std Dev	MOR (psi)	Std Dev	Energy (ft. Lbs)	Std Dev				
C1	1627612.8		9108.37		47.93					
C2	1759155.4		11595.76		83.26					
C3	1559421.4		8346.92		42.46					
C4	1572317.5		8857.45		42.96					
C5	1579131.5		9396.99		37.94					
C6	1646932.1		8635.54		46.44					
C7	1842919.7		11656.68		85.41					
C8	1525505.1		8288.90		41.62					
C9	1499996.4		9378.14		53.29					
C10	1672590.4	104490.61	9259.21	1087.70	44.97	16.16				
C11	1672054.0		8680.51		42.10					
C12	1748393.7		10419.51		60.69					
C13	1680669.9		10874.93		81.30					
C14	1500312.2		10307.83		70.01					
C15	1824220.7		10850.27		66.68					
C16	1805511.2		10497.83		67.33					
C17	1720166.2		10624.01		72.01					
C18	1585456.6		10496.38		71.85					
C19	1690244.7]	10901.03		n/a					
C20	1711510.5		11048.97		75.39					

Table 4. Standard deviations for untreated and treated LVL.

	Treated LVL Samples								
ID	MOE (psi)	Std Dev	MOR (psi)	Std Dev	Energy (ft. Lbs)	Std Dev			
T1	1538377.4		9518.82		56.45				
T2	1575391.6		7282.34		n/a				
Т3	1543311.3		7173.56		n/a				
T4	1507941.9		10254.17		71.43				
T5	1675043.9		8768.98		37.81				
T6	1794464.9		11668.28		n/a				
T7	1857923.6		11266.53		74.23				
T8	1589090.5		7472.34		31.31				
Т9	1718224.1		11497.14		77.16				
T10	1813014.4	120163.29	10268.67	1356.81	54.68	15.84			
T11	1683023.3		10016.30		64.26				
T12	1693372.2		11069.28		84.71				
T13	1884323.2		10188.90		60.17				
T14	1681192.9		10828.51		85.25				
T15	1820444.6		10563.10		76.91				
T16	1613015.5		9576.84		53.19				
T17	1654143.5		10325.23		73.02				
T18	1593449.4		10595.00		80.84				
T19	1905572.5]	11372.41		82.26				
T20	1675688.9		10023.56		64.51				

	Untreated vs. Treated LVL Samples								
				MOR					
	ANOVA		LSD		LSD	Energy (ft. Lbs)	LSD		
<u>C1</u>	1	1627612.8		9108.37	4	47.93	-		
C2	1	1759155.4		11595.76	ł	83.26	-		
<u>C3</u>	1	1559421.4		8346.92	ł	42.46	-		
C4	1	1572317.5	-	8857.45	-	42.96	-		
C5	1	1579131.5	-	9396.99	-	37.94	-		
C6	1	1646932.1	-	8635.54	4	46.44			
C7	1	1842919.7		11656.68		85.41			
C8	1	1525505.1		8288.90		41.62			
C9	1	1499996.4		9378.14		53.29			
C10	1	1672590.4	Α	9259.21	Α	44.97	Α		
C11	1	1672054.0		8680.51		42.10			
C12	1	1748393.7		10419.51		60.69			
C13	1	1680669.9		10874.93		81.30			
C14	1	1500312.2		10307.83		70.01			
C15	1	1824220.7		10850.27		66.68			
C16	1	1805511.2		10497.83		67.33			
C17	1	1720166.2		10624.01		72.01			
C18	1	1585456.6		10496.38		71.85			
C19	1	1690244.7		10901.03]	n/a			
C20	1	1711510.5		11048.97		75.39			
T1	2	1538377.4		9518.82		56.45			
T2	2	1575391.6		7282.34]	n/a			
Т3	2	1543311.3		7173.56		n/a			
T4	2	1507941.9		10254.17		71.43			
T5	2	1675043.9		8768.98	1	37.81			
T6	2	1794464.9		11668.28	1	n/a	1		
T7	2	1857923.6		11266.53	1	74.23	1		
T8	2	1589090.5		7472.34	1	31.31	1		
T9	2	1718224.1		11497.14		77.16			
T10	2	1813014.4	Α	10268.67	Α	54.68	Α		
T11	2	1683023.3		10016.30	1	64.26	1		
T12	2	1693372.2		11069.28		84.71	1		
T13	2	1884323.2		10188 90	1	60 17	1		
T14	2	1681192.9		10828.51	1	85 25	1		
T15	2	1820444 6		10563 10	1	76 91	1		
T16	2	1613015 5		9576.84	-	53 19	1		
T17	2	1654143.5		10325.23	ł	73.02	1		
T18	2	1593//0 /		10525.25	-	80.84	-		
T10	2	1005572 5		11372 /1	{	82.26	-		
T20	2	1675600 0		10022 56	{	61 51	-		
120	L 2	1010000.9	1	10023.30	1	04.51	1		

Table 5. Summary data for flexure testing & corresponding LSD grouping values.

*Note: groups containing the same capital letter in the LSD Group column are not significantly different from one another at alpha = 0.05.

	1st Data Set							
ID	ANOVA	MOE (psi)	LSD	MOR (psi)	LSD	Energy (ft. Lbs)	LSD	
C1	1	1627612.8		9108.37		47.93		
C2	1	1759155.4		11595.76		83.26		
C3	1	1559421.4		8346.92]	42.46		
C4	1	1572317.5		8857.45		42.96		
C5	1	1579131.5	Α	9396.99	Α	37.94	Α	
C6	1	1646932.1		8635.54]	46.44		
C7	1	1842919.7		11656.68]	85.41		
C8	1	1525505.1		8288.90		41.62		
C9	1	1499996.4		9378.14		53.29		
C10	1	1672590.4		9259.21		44.97		
T1	2	1538377.4		9518.82		56.45		
T2	2	1575391.6		7282.34		n/a		
Т3	2	1543311.3		7173.56		n/a		
T4	2	1507941.9		10254.17		71.43		
T5	2	1675043.9	Α	8768.98	Α	37.81	Α	
T6	2	1794464.9		11668.28		n/a		
T7	2	1857923.6		11266.53		74.23		
T8	2	1589090.5		7472.34		31.31		
Т9	2	1718224.1		11497.14		77.16		
T10	2	1813014.4		10268.67		54.68		
			2					
				nd Data Set				
ID	ANOVA	MOE (psi)	LSD	nd Data Set MOR (psi)	LSD	Energy (ft. Lbs)	LSD	
ID C11	ANOVA 1	MOE (psi) 1672054.0	LSD	nd Data Set MOR (psi) 8680.51	LSD	Energy (ft. Lbs) 42.10	LSD	
ID C11 C12	ANOVA 1	MOE (psi) 1672054.0 1748393.7	LSD	nd Data Set MOR (psi) 8680.51 10419.51	LSD	Energy (ft. Lbs) 42.10 60.69	LSD	
ID C11 C12 C13	ANOVA 1 1 1 1	MOE (psi) 1672054.0 1748393.7 1680669.9	LSD	nd Data Set MOR (psi) 8680.51 10419.51 10874.93	LSD	Energy (ft. Lbs) 42.10 60.69 81.30	LSD	
ID C11 C12 C13 C14	ANOVA 1 1 1 1 1 1 1	MOE (psi) 1672054.0 1748393.7 1680669.9 1500312.2	LSD	nd Data Set MOR (psi) 8680.51 10419.51 10874.93 10307.83	LSD	Energy (ft. Lbs) 42.10 60.69 81.30 70.01	LSD	
ID C11 C12 C13 C14 C15	ANOVA 1 1 1 1 1 1 1 1 1 1	MOE (psi) 1672054.0 1748393.7 1680669.9 1500312.2 1824220.7	LSD	nd Data Set MOR (psi) 8680.51 10419.51 10874.93 10307.83 10850.27	LSD	Energy (ft. Lbs) 42.10 60.69 81.30 70.01 66.68	LSD	
ID C11 C12 C13 C14 C15 C16	ANOVA 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MOE (psi) 1672054.0 1748393.7 1680669.9 1500312.2 1824220.7 1805511.2	LSD	nd Data Set MOR (psi) 8680.51 10419.51 10874.93 10307.83 10850.27 10497.83	LSD	Energy (ft. Lbs) 42.10 60.69 81.30 70.01 66.68 67.33	LSD	
ID C11 C12 C13 C14 C15 C16 C17	ANOVA 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MOE (psi) 1672054.0 1748393.7 1680669.9 1500312.2 1824220.7 1805511.2 1720166.2	LSD	nd Data Set MOR (psi) 8680.51 10419.51 10874.93 10307.83 10850.27 10497.83 10624.01	LSD	Energy (ft. Lbs) 42.10 60.69 81.30 70.01 66.68 67.33 72.01	LSD	
ID C11 C12 C13 C14 C15 C16 C17 C18	ANOVA 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MOE (psi) 1672054.0 1748393.7 1680669.9 1500312.2 1824220.7 1805511.2 1720166.2 1585456.6	LSD A	nd Data Set MOR (psi) 8680.51 10419.51 10874.93 10307.83 10850.27 10497.83 10624.01 10496.38	A	Energy (ft. Lbs) 42.10 60.69 81.30 70.01 66.68 67.33 72.01 71.85	LSD	
ID C11 C12 C13 C14 C15 C16 C17 C18 C19	ANOVA 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MOE (psi) 1672054.0 1748393.7 1680669.9 1500312.2 1824220.7 1805511.2 1720166.2 1585456.6 1690244.7	LSD A	nd Data Set MOR (psi) 8680.51 10419.51 10874.93 10307.83 10850.27 10497.83 10624.01 10496.38 10901.03	A	Energy (ft. Lbs) 42.10 60.69 81.30 70.01 66.68 67.33 72.01 71.85 n/a	A	
ID C11 C12 C13 C14 C15 C16 C17 C18 C19 C20	ANOVA 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MOE (psi) 1672054.0 1748393.7 1680669.9 1500312.2 1824220.7 1805511.2 1720166.2 1585456.6 1690244.7 1711510.5	A	MOR (psi) 8680.51 10419.51 10874.93 10307.83 10497.83 10624.01 10496.38 10901.03 11048.97	A	Energy (ft. Lbs) 42.10 60.69 81.30 70.01 66.68 67.33 72.01 71.85 n/a 75.39	A	
ID C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 T11	ANOVA 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2	MOE (psi) 1672054.0 1748393.7 1680669.9 1500312.2 1824220.7 1805511.2 1720166.2 1585456.6 1690244.7 1711510.5 1683023.3	A	nd Data Set MOR (psi) 8680.51 10419.51 10874.93 10307.83 10850.27 10497.83 10624.01 10496.38 10901.03 11048.97 10016.30	A	Energy (ft. Lbs) 42.10 60.69 81.30 70.01 66.68 67.33 72.01 71.85 n/a 75.39 64.26	A	
ID C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 T11 T12	ANOVA 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2	MOE (psi) 1672054.0 1748393.7 1680669.9 1500312.2 1824220.7 1805511.2 1720166.2 1585456.6 1690244.7 1711510.5 1683023.3 1693372.2	A	nd Data Set MOR (psi) 8680.51 10419.51 10874.93 10307.83 10850.27 10497.83 10624.01 10496.38 10901.03 11048.97 10016.30 11069.28	A	Energy (ft. Lbs) 42.10 60.69 81.30 70.01 66.68 67.33 72.01 71.85 n/a 75.39 64.26 84.71	A	
ID C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 T11 T12 T13	ANOVA 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2	MOE (psi) 1672054.0 1748393.7 1680669.9 1500312.2 1824220.7 1805511.2 1720166.2 1585456.6 1690244.7 1711510.5 1683023.3 1693372.2 1884323.2	A	nd Data Set MOR (psi) 8680.51 10419.51 10874.93 10307.83 10850.27 10497.83 10624.01 10496.38 10901.03 11048.97 10016.30 11069.28 10188.90	A	Energy (ft. Lbs) 42.10 60.69 81.30 70.01 66.68 67.33 72.01 71.85 n/a 75.39 64.26 84.71 60.17	A	
ID C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 T11 T12 T13 T14	ANOVA 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2	MOE (psi) 1672054.0 1748393.7 1680669.9 1500312.2 1824220.7 1805511.2 1720166.2 1585456.6 1690244.7 1711510.5 1683023.3 1693372.2 1884323.2 1681192.9	A	nd Data Set MOR (psi) 8680.51 10419.51 10874.93 10307.83 10850.27 10497.83 10624.01 10496.38 10901.03 11048.97 10016.30 11069.28 10188.90 10828.51	A	Energy (ft. Lbs) 42.10 60.69 81.30 70.01 66.68 67.33 72.01 71.85 n/a 75.39 64.26 84.71 60.17 85.25	A	
ID C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 T11 T12 T13 T14 T15	ANOVA 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2	MOE (psi) 1672054.0 1748393.7 1680669.9 1500312.2 1824220.7 1805511.2 1720166.2 1585456.6 1690244.7 1711510.5 1683023.3 1693372.2 1884323.2 1681192.9 1820444.6	A	nd Data Set MOR (psi) 8680.51 10419.51 10874.93 10307.83 10850.27 10497.83 10624.01 10496.38 10901.03 11048.97 10016.30 11069.28 10188.90 10828.51 10563.10	A	Energy (ft. Lbs) 42.10 60.69 81.30 70.01 66.68 67.33 72.01 71.85 n/a 75.39 64.26 84.71 60.17 85.25 76.91	A	
ID C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 T11 T12 T13 T14 T15 T16	ANOVA 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2	MOE (psi) 1672054.0 1748393.7 1680669.9 1500312.2 1824220.7 1805511.2 1720166.2 1585456.6 1690244.7 1711510.5 1683023.3 1693372.2 1884323.2 1884323.2 1681192.9 1820444.6 1613015.5	A	nd Data Set MOR (psi) 8680.51 10419.51 10874.93 10307.83 10850.27 10497.83 10624.01 10496.38 10901.03 11048.97 10016.30 11069.28 10188.90 10828.51 10563.10 9576.84	A	Energy (ft. Lbs) 42.10 60.69 81.30 70.01 66.68 67.33 72.01 71.85 n/a 75.39 64.26 84.71 60.17 85.25 76.91 53.19	A	
ID C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 T11 T12 T13 T14 T15 T16 T17	ANOVA 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2	MOE (psi) 1672054.0 1748393.7 1680669.9 1500312.2 1824220.7 1805511.2 1720166.2 1585456.6 1690244.7 1711510.5 1683023.3 1693372.2 1884323.2 1681192.9 1820444.6 1613015.5 1654143.5	A	MOR (psi) 8680.51 10419.51 10874.93 10307.83 10850.27 10497.83 10624.01 10496.38 10901.03 11048.97 10016.30 11069.28 10188.90 10828.51 10563.10 9576.84 10325.23	A	Energy (ft. Lbs) 42.10 60.69 81.30 70.01 66.68 67.33 72.01 71.85 n/a 75.39 64.26 84.71 60.17 85.25 76.91 53.19 73.02	A	
ID C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 T11 T12 T13 T14 T15 T16 T17 T18	ANOVA 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2	MOE (psi) 1672054.0 1748393.7 1680669.9 1500312.2 1824220.7 1805511.2 1720166.2 1585456.6 1690244.7 1711510.5 1683023.3 1693372.2 1884323.2 1681192.9 1820444.6 1613015.5 1654143.5	A	nd Data Set MOR (psi) 8680.51 10419.51 10874.93 10307.83 10850.27 10497.83 10624.01 10496.38 10901.03 11048.97 10016.30 11069.28 10188.90 10828.51 10563.10 9576.84 10325.23 10595.00	A	Energy (ft. Lbs) 42.10 60.69 81.30 70.01 66.68 67.33 72.01 71.85 n/a 75.39 64.26 84.71 60.17 85.25 76.91 53.19 73.02 80.84	A	
ID C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 T11 T12 T13 T14 T15 T16 T17 T18 T19	ANOVA 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2	MOE (psi) 1672054.0 1748393.7 1680669.9 1500312.2 1824220.7 1805511.2 1720166.2 1585456.6 1690244.7 1711510.5 1683023.3 1693372.2 1884323.2 1681192.9 1820444.6 1613015.5 1654143.5 1593449.4 1905572.5	A	MOR (psi) 8680.51 10419.51 10874.93 10307.83 10850.27 10497.83 10624.01 10496.38 10901.03 11048.97 10016.30 11069.28 10188.90 10828.51 10563.10 9576.84 10325.23 10595.00 11372.41	A	Energy (ft. Lbs) 42.10 60.69 81.30 70.01 66.68 67.33 72.01 71.85 n/a 75.39 64.26 84.71 60.17 85.25 76.91 53.19 73.02 80.84 82.26	A	

Table 6. Summary data for flexure testing & corresponding LSD grouping values. This table groups samples based on density groups.

*Note: groups containing the same capital letter in the LSD Group column are not significantly different from one another at alpha = 0.05.

Figure 2. MOE, MOR, & Energy of treated vs. untreated samples for mean values.

Figure 3. MOE, MOR, energy of treated vs. untreated samples for standard deviations.

CONCLUSIONS

The results showed that there was no significant difference between the treated and untreated groups for MOR, MOE, and energy. The treated samples did have a larger standard deviation among the samples. The treated mean values were slightly higher than corresponding untreated values for MOR and MOE but were slightly lower for energy. The determination can be made that the Eco Red Shield Protection treatment had no significant effect on MOE, MOR, and energy based on the results of this testing.

REFERENCES CITED

American Society for Testing and Materials (ASTM) 2002. Standard Test Methods of Static Tests of Lumber in Structural Sizes (D198-02). 2002 book of standards. West Conshohocken, PA

SPSS For Windows. 2006. Chicago, IL.

Steel, R.G.D. and J.H. Torrie. 1980. Principle and procedures of statistics – A biometrical approach. 2^{nd} edition. McGraw Hill. New York. 633 p.

	Initial	<u> </u>	Wt	H2O	Solid	AM Wt.	PM Wt.	AM Wt.
	Wt	Treated	Gain	Gain	Gain	(lbs)	(lbs)	(lbs)
ID	(lbs)	Wt (lbs)	(lbs)	(lbs)	(lbs)	8/9/11	8/9/11	8/10/11
T1	3.14	3.2	0.06	0.05	0.02	3.2	3.2	3.2
T2	3.23	3.3	0.07	0.05	0.02	3.3	3.3	3.3
T3	3.10	3.2	0.06	0.04	0.02	3.1	3.1	3.1
T4	3.12	3.2	0.09	0.06	0.02	3.2	3.2	3.2
T5	3.05	3.1	0.08	0.06	0.02	3.1	3.1	3.1
T6	3.18	3.2	0.07	0.05	0.02	3.2	3.2	3.2
T7	3.18	3.2	0.06	0.04	0.02	3.2	3.2	3.2
T8	3.21	3.3	0.08	0.06	0.02	3.2	3.2	3.2
Т9	3.29	3.4	0.06	0.05	0.02	3.3	3.3	3.3
T10	3.15	3.2	0.07	0.05	0.02	3.2	3.2	3.2
T11	3.41	3.5	0.10	0.07	0.03	3.5	3.5	3.5
T12	3.37	3.5	0.10	0.07	0.03	3.4	3.4	3.4
T13	3.51	3.6	0.09	0.07	0.03	3.6	3.6	3.6
T14	3.49	3.6	0.09	0.06	0.02	3.5	3.5	3.5
T15	3.58	3.7	0.12	0.08	0.03	3.7	3.6	3.6
T16	3.34	3.4	0.09	0.07	0.03	3.4	3.4	3.4
T17	3.61	3.7	0.12	0.09	0.03	3.7	3.7	3.7
T18	3.41	3.5	0.08	0.06	0.02	3.5	3.5	3.5
T19	3.49	3.6	0.08	0.06	0.02	3.5	3.5	3.5
T20	3.62	3.7	0.10	0.07	0.03	3.7	3.7	3.7

Appendix I. Treating data for ASTM D198 flexure testing on Douglas-fir LVL.

	Initial	1st dry wt (lbs)	2nd dry wt (lbs)	final OD wt (lbs)	
ID	Wt (lbs)	8/11/11	8/11/11	8/12/11`´´	MC
C1	0.095	0.094	0.091	0.090	5.67%
C2	0.098	0.097	0.095	0.094	4.18%
C3	0.104	0.102	0.100	0.099	4.83%
C4	0.105	0.104	0.102	0.100	5.45%
C5	0.098	0.097	0.095	0.093	5.19%
C6	0.103	0.102	0.099	0.097	5.86%
C7	0.109	0.107	0.104	0.103	5.79%
C8	0.109	0.107	0.105	0.102	6.39%
C9	0.110	0.108	0.106	0.103	6.84%
C10	0.106	0.104	0.101	0.098	7.95%
C11	0.104	0.102	0.100	0.098	6.45%
C12	0.117	0.115	0.112	0.109	7.55%
C13	0.119	0.117	0.114	0.111	7.44%
C14	0.120	0.117	0.114	0.111	7.61%
C15	0.117	0.116	0.113	0.110	6.88%
C16	0.108	0.106	0.105	0.103	5.10%
C17	0.115	0.113	0.110	0.107	6.70%
C18	0.119	0.116	0.113	0.110	7.66%
C19	0.116	0.114	0.112	0.108	7.21%
C20	0.122	0.120	0.117	0.114	6.94%
	Initial	1st dry wt (lbs)	2nd dry wt (lbs)	final OD wt (lbs)	
ID	Initial Wt (Ibs)	1st dry wt (lbs) 8/11/11	2nd dry wt (lbs) 8/11/11	final OD wt (lbs) 8/12/11	мс
ID T1	Initial Wt (lbs) 0.105	1st dry wt (lbs) 8/11/11 0.104	2nd dry wt (lbs) 8/11/11 0.101	final OD wt (lbs) 8/12/11 0.099	MC 6.66%
ID T1 T2	Initial Wt (lbs) 0.105 0.113	1st dry wt (lbs) 8/11/11 0.104 0.111	2nd dry wt (lbs) 8/11/11 0.101 0.109	final OD wt (lbs) 8/12/11 0.099 0.106	MC 6.66% 6.45%
ID T1 T2 T3	Initial Wt (lbs) 0.105 0.113 0.104	1st dry wt (lbs) <u>8/11/11</u> 0.104 0.111 0.102	2nd dry wt (lbs) 8/11/11 0.101 0.109 0.100	final OD wt (lbs) 8/12/11 0.099 0.106 0.097	MC 6.66% 6.45% 6.49%
ID T1 T2 T3 T4	Initial Wt (Ibs) 0.105 0.113 0.104 0.106	1st dry wt (lbs) <u>8/11/11</u> 0.104 0.111 0.102 0.105	2nd dry wt (lbs) 8/11/11 0.101 0.109 0.100 0.103	final OD wt (lbs) 8/12/11 0.099 0.106 0.097 0.099	MC 6.66% 6.45% 6.49% 6.69%
ID T1 T2 T3 T4 T5	Initial Wt (lbs) 0.105 0.113 0.104 0.106 0.104	1st dry wt (lbs) 8/11/11 0.104 0.111 0.102 0.105 0.103	2nd dry wt (lbs) 8/11/11 0.101 0.109 0.100 0.103 0.101	final OD wt (lbs) 8/12/11 0.099 0.106 0.097 0.099 0.098	MC 6.66% 6.45% 6.49% 6.69% 6.87%
ID T1 T2 T3 T4 T5 T6	Initial Wt (Ibs) 0.105 0.113 0.104 0.106 0.104 0.104	1st dry wt (lbs) 8/11/11 0.104 0.111 0.102 0.105 0.103 0.103	2nd dry wt (lbs) 8/11/11 0.101 0.109 0.100 0.103 0.101 0.101	final OD wt (lbs) 8/12/11 0.099 0.106 0.097 0.099 0.098 0.098	MC 6.66% 6.45% 6.49% 6.69% 6.87% 6.55%
ID T1 T2 T3 T4 T5 T6 T7	Initial Wt (Ibs) 0.105 0.113 0.104 0.106 0.104 0.104 0.102	1st dry wt (lbs) 8/11/11 0.104 0.111 0.102 0.105 0.103 0.103 0.100	2nd dry wt (lbs) 8/11/11 0.101 0.109 0.100 0.103 0.101 0.101 0.098	final OD wt (lbs) 8/12/11 0.099 0.106 0.097 0.099 0.098 0.098 0.098	MC 6.66% 6.45% 6.49% 6.69% 6.87% 6.55% 6.85%
ID T1 T2 T3 T4 T5 T6 T7 T8	Initial Wt (Ibs) 0.105 0.113 0.104 0.104 0.104 0.104 0.102 0.109	1st dry wt (lbs) 8/11/11 0.104 0.111 0.102 0.105 0.103 0.103 0.100 0.107	2nd dry wt (lbs) 8/11/11 0.101 0.109 0.100 0.103 0.101 0.101 0.098 0.105	final OD wt (lbs) 8/12/11 0.099 0.106 0.097 0.099 0.098 0.098 0.098 0.096 0.102	MC 6.66% 6.45% 6.49% 6.69% 6.87% 6.55% 6.85% 7.12%
ID T1 T2 T3 T4 T5 T6 T7 T8 T9	Initial Wt (Ibs) 0.105 0.113 0.104 0.104 0.104 0.104 0.102 0.109 0.113	1st dry wt (lbs) <u>8/11/11</u> 0.104 0.111 0.102 0.105 0.103 0.103 0.100 0.107 0.111	2nd dry wt (lbs) 8/11/11 0.101 0.109 0.100 0.103 0.101 0.101 0.098 0.105 0.108	final OD wt (lbs) 8/12/11 0.099 0.106 0.097 0.099 0.098 0.098 0.098 0.096 0.102 0.106	MC 6.66% 6.45% 6.49% 6.69% 6.87% 6.55% 6.85% 7.12% 6.58%
ID T1 T2 T3 T4 T5 T6 T7 T8 T9 T10	Initial Wt (lbs) 0.105 0.113 0.104 0.104 0.104 0.104 0.104 0.104 0.104 0.104 0.104 0.104 0.104 0.102 0.109 0.113 0.107	1st dry wt (lbs) 8/11/11 0.104 0.111 0.102 0.105 0.103 0.103 0.100 0.107 0.111 0.105	2nd dry wt (lbs) 8/11/11 0.101 0.109 0.100 0.103 0.101 0.101 0.098 0.105 0.108 0.102	final OD wt (lbs) 8/12/11 0.099 0.106 0.097 0.099 0.098 0.098 0.098 0.096 0.102 0.106 0.100	MC 6.66% 6.45% 6.49% 6.69% 6.87% 6.55% 6.85% 7.12% 6.58% 6.86%
ID T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11	Initial Wt (Ibs) 0.105 0.113 0.104 0.104 0.104 0.104 0.102 0.109 0.113 0.107 0.114	1st dry wt (lbs) 8/11/11 0.104 0.111 0.102 0.105 0.103 0.103 0.100 0.107 0.111 0.105	2nd dry wt (lbs) 8/11/11 0.101 0.109 0.100 0.103 0.101 0.101 0.098 0.105 0.105 0.108 0.102 0.107	final OD wt (lbs) 8/12/11 0.099 0.106 0.097 0.099 0.098 0.098 0.098 0.096 0.102 0.102 0.106 0.100 0.106	MC 6.66% 6.45% 6.49% 6.69% 6.87% 6.85% 6.85% 7.12% 6.58% 6.86% 7.55%
ID T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12	Initial Wt (Ibs) 0.105 0.113 0.104 0.104 0.104 0.104 0.102 0.109 0.113 0.107 0.114 0.118	1st dry wt (lbs) 8/11/11 0.104 0.111 0.102 0.105 0.103 0.103 0.100 0.107 0.111 0.105	2nd dry wt (lbs) 8/11/11 0.101 0.109 0.100 0.103 0.101 0.101 0.098 0.105 0.105 0.108 0.102 0.107 0.112	final OD wt (lbs) 8/12/11 0.099 0.106 0.097 0.099 0.098 0.098 0.098 0.096 0.102 0.102 0.106 0.100 0.109	MC 6.66% 6.45% 6.49% 6.69% 6.87% 6.55% 6.85% 7.12% 6.58% 6.86% 7.55% 7.91%
ID T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13	Initial Wt (Ibs) 0.105 0.113 0.104 0.104 0.104 0.104 0.102 0.109 0.113 0.107 0.114 0.118 0.107	1st dry wt (lbs) 8/11/11 0.104 0.111 0.102 0.105 0.103 0.103 0.107 0.111 0.105 0.103 0.103 0.103 0.103 0.105 0.107 0.111 0.105 0.115 0.105	2nd dry wt (lbs) 8/11/11 0.101 0.109 0.100 0.103 0.101 0.101 0.098 0.105 0.105 0.108 0.102 0.107 0.112 0.103	final OD wt (lbs) 8/12/11 0.099 0.106 0.097 0.099 0.098 0.098 0.098 0.096 0.102 0.106 0.100 0.100 0.109 0.109 0.099	MC 6.66% 6.45% 6.49% 6.69% 6.87% 6.85% 6.85% 6.85% 6.85% 6.86% 7.55% 7.91% 7.43%
ID T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14	Initial Wt (lbs) 0.105 0.113 0.104 0.106 0.104 0.104 0.104 0.104 0.104 0.104 0.104 0.107 0.114 0.107 0.107 0.107 0.107	1st dry wt (lbs) 8/11/11 0.104 0.111 0.102 0.105 0.103 0.103 0.100 0.107 0.111 0.105 0.103 0.103 0.100 0.101 0.105 0.105 0.105 0.112 0.115 0.105 0.105 0.122	2nd dry wt (lbs) 8/11/11 0.101 0.109 0.100 0.103 0.101 0.098 0.105 0.105 0.108 0.105 0.108 0.102 0.107 0.112 0.103 0.119	final OD wt (lbs) 8/12/11 0.099 0.106 0.097 0.099 0.098 0.098 0.098 0.096 0.102 0.106 0.100 0.106 0.109 0.109 0.099 0.115	MC 6.66% 6.45% 6.49% 6.69% 6.87% 6.85% 7.12% 6.58% 6.85% 7.12% 6.58% 6.86% 7.55% 7.91% 7.43% 8.15%
ID T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15	Initial Wt (lbs) 0.105 0.113 0.104 0.104 0.104 0.104 0.104 0.104 0.104 0.104 0.102 0.109 0.113 0.107 0.114 0.118 0.107 0.125 0.119	1st dry wt (lbs) 8/11/11 0.104 0.111 0.102 0.105 0.103 0.103 0.103 0.103 0.105 0.103 0.103 0.105 0.107 0.111 0.105 0.112 0.115 0.105 0.115 0.105 0.122 0.116	2nd dry wt (lbs) 8/11/11 0.101 0.109 0.100 0.103 0.101 0.101 0.098 0.105 0.105 0.108 0.102 0.102 0.107 0.112 0.103 0.119 0.114	final OD wt (lbs) 8/12/11 0.099 0.106 0.097 0.099 0.098 0.098 0.098 0.096 0.102 0.102 0.106 0.100 0.100 0.109 0.099 0.115 0.110	MC 6.66% 6.45% 6.49% 6.69% 6.87% 6.55% 6.85% 7.12% 6.58% 6.86% 7.55% 7.91% 7.43% 8.15% 8.10%
ID T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16	Initial Wt (Ibs) 0.105 0.113 0.104 0.104 0.104 0.104 0.102 0.109 0.113 0.107 0.114 0.118 0.107 0.125 0.119 0.113	1st dry wt (lbs) 8/11/11 0.104 0.111 0.102 0.105 0.103 0.103 0.100 0.107 0.111 0.105 0.103 0.103 0.103 0.103 0.105 0.105 0.107 0.111 0.105 0.115 0.105 0.122 0.116 0.111	2nd dry wt (lbs) 8/11/11 0.101 0.109 0.100 0.103 0.101 0.098 0.105 0.105 0.108 0.102 0.107 0.112 0.103 0.119 0.114 0.110	final OD wt (lbs) 8/12/11 0.099 0.106 0.097 0.099 0.098 0.098 0.098 0.096 0.102 0.102 0.106 0.100 0.100 0.109 0.099 0.115 0.110 0.105	MC 6.66% 6.45% 6.49% 6.69% 6.87% 6.55% 6.85% 7.12% 6.58% 6.86% 7.55% 7.91% 7.43% 8.15% 8.10% 7.69%
ID T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17	Initial Wt (Ibs) 0.105 0.113 0.104 0.104 0.104 0.104 0.102 0.109 0.113 0.107 0.114 0.118 0.107 0.114 0.118 0.107 0.125 0.119 0.113 0.126	1st dry wt (lbs) 8/11/11 0.104 0.111 0.102 0.105 0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.105 0.107 0.111 0.105 0.115 0.115 0.105 0.115 0.105 0.112 0.115 0.122 0.116 0.111 0.124	2nd dry wt (lbs) 8/11/11 0.101 0.109 0.100 0.103 0.101 0.098 0.105 0.105 0.108 0.102 0.107 0.112 0.103 0.119 0.114 0.110 0.121	final OD wt (lbs) 8/12/11 0.099 0.106 0.097 0.099 0.098 0.098 0.098 0.096 0.102 0.102 0.106 0.100 0.100 0.109 0.099 0.115 0.110 0.105 0.115	MC 6.66% 6.45% 6.49% 6.69% 6.87% 6.55% 6.85% 7.12% 6.58% 6.86% 7.55% 7.91% 7.43% 8.15% 8.10% 7.69% 9.36%
ID T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18	Initial Wt (Ibs) 0.105 0.113 0.104 0.104 0.104 0.104 0.102 0.109 0.113 0.107 0.114 0.107 0.114 0.107 0.118 0.107 0.125 0.119 0.113 0.126 0.117	1st dry wt (lbs) 8/11/11 0.104 0.111 0.102 0.105 0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.105 0.107 0.111 0.105 0.115 0.115 0.105 0.122 0.116 0.111 0.124 0.116	2nd dry wt (lbs) 8/11/11 0.101 0.109 0.100 0.103 0.101 0.098 0.105 0.105 0.108 0.105 0.108 0.102 0.107 0.112 0.103 0.119 0.114 0.110 0.121 0.113	final OD wt (lbs) 8/12/11 0.099 0.106 0.097 0.099 0.098 0.098 0.096 0.102 0.106 0.100 0.106 0.109 0.109 0.109 0.099 0.115 0.110 0.105 0.115 0.108	MC 6.66% 6.45% 6.49% 6.69% 6.87% 6.55% 6.85% 7.12% 6.58% 6.86% 7.55% 7.91% 7.43% 8.15% 8.10% 7.69% 9.36% 7.63%
ID T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T16 T17 T18 T19	Initial Wt (Ibs) 0.105 0.113 0.104 0.104 0.104 0.104 0.102 0.109 0.113 0.107 0.114 0.118 0.107 0.125 0.119 0.113 0.125 0.119 0.113 0.126	1st dry wt (lbs) 8/11/11 0.104 0.111 0.102 0.105 0.103 0.103 0.100 0.107 0.111 0.105 0.103 0.103 0.103 0.105 0.107 0.111 0.105 0.115 0.105 0.115 0.105 0.122 0.116 0.111 0.124 0.116 0.117	2nd dry wt (lbs) 8/11/11 0.101 0.109 0.100 0.103 0.101 0.098 0.105 0.105 0.108 0.105 0.108 0.102 0.107 0.112 0.103 0.119 0.114 0.110 0.121 0.113 0.115	final OD wt (lbs) 8/12/11 0.099 0.106 0.097 0.099 0.098 0.098 0.098 0.096 0.102 0.102 0.106 0.100 0.106 0.109 0.109 0.099 0.115 0.110 0.105 0.115 0.110 0.108 0.110	MC 6.66% 6.45% 6.49% 6.69% 6.87% 6.55% 6.85% 7.12% 6.58% 6.86% 7.55% 7.91% 7.91% 7.43% 8.15% 8.10% 7.69% 9.36% 7.34%

Appendix II.	Moisture content	data for ASTM	D198 flexure	testing on	Douglas-	fir LVL.
rpponem in			DIJO Henere	costing on	Douglas	